واکنش‌های فیزیولوژیکی و فعالیت آنزیم‌های آنتی‌اکسیدان در برخی از ارقام انگور در شرایط تنش گرما

نوع مقاله: مقاله پژوهشی

نویسندگان

1 بخش تحقیقات اصلاح و تهیه نهال و بذر استان فارس. سازمان تحقبقات، آموزش و ترویج کشاورزی ایران.

2 بخش گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

به دلیل توسعه کاشت انگور در مناطق گرم در سال‌های اخیر، بررسی واکنش ارقام انگور به تنش گرما به منظور غربالگری و گزینش ارقام متحمل به گرما ضروری است.این پژوهش با هدف تعیین نقش آنزیم‌های آنتی‌اکسیدان شامل: کاتالاز، پراکسیداز، آسکوربات پراکسیداز و سوپراکسید دیسموتاز در فرآیند تحمل گرما در شش رقم انگور تجاری در شرایط تنش گرما (1 ± 45درجه سلسیوس) در موستان در سال‌های 93-1390 در منطقه نیمه گرمسیر قیر در استان فارس انجام شد. شاخص‌های فیزیولوژیکی شامل: محتوای کل کلروفیل، کلروفیل a، کلروفیل b و فلورسانس کلروفیل (Fv/Fm) برگ نیز بررسی شدند. نتایج نشان داد که آنزیم‌های کاتالاز و پراکسیداز فعالیت بالایی در تاک‌ها در مقابل تنش گرما داشتند. در شرایط یکسان تنش گرما بیشترین فعالیت آنزیم‌های کاتالاز و پراکسیداز در تاک‌های فلیم‌سیدلس و رطبی در مقایسه با سایر ارقام مشاهده شد. مقدار بیشتر محتوای کل کلروفیل، کلروفیل a و کلروفیل b با نسبت بالای Fv/Fm برگ همراه بود و مقدار آنها در رقم فلیم‌سیدلس و بعد از آن در رقم رطبی مشاهده شد. نتایج نشان داد رقم فلیم‌سیدلس و پس از آن رقم رطبی از سایرارقام واجد شاخص‌های فیزیولوژیک و بیوشیمیایی مرتبط با سازگاری به شرایط تنش گرما بودند. همخوانی این نتایج با آزمایش مزرعه‌ای قبلی که درآن بالاترین عمکرد را در شرایط تنش گرما برای ارقام رطبی و فلیم سیدلس گزارش شده بود، قابلیت بررسی صفات فیزیولوژیک و فعالیت آنزیم‌های آنتی اکسیدان برای تعیین و غربالگری ارقام متحمل به تنش گرما را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Physiological Responses and Antioxidant Enzymes Activity in Some Grapevine Cultivars under Heat Stress Conditions

نویسندگان [English]

  • Mohammad Javad Karami 1
  • S. Eshghi 2
1 Deparment of Seed and Plant Improvement of Fars province.
2 Faculty of Agriculture, University of Shiraz, Shiraz, Iran.
چکیده [English]

In recent years, grape growing areas has extended to warm region, therefore, study on grapevine response to heat stress for screening and selection of heat tolerant cultivars is important. Antioxidant systems activity in plants is one of the most important plant adaptation mechanisms to abiotic stresses. This research aimed to determine the response of antioxidant enzymes such as catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities to heat stress in six grapevine cultivars under vineyard conditions. Some physiological traits including; total leaf chlorophyll, chlorophyll a and b contents and chlorophyll fluorescence (Fv/Fm) response were also measured. Results showed that CAT and POD enzymes played criticals roles in the grapevine defense system under high temperature stress. Flame Seedless and Rotabi cultivars had high CAT and POD enzymes activities. Total chlorophyll, chlorophyll a and b concentration were associated to higher Fv/Fm, and were the highest in Flame Seedless followed by Rotabi cultivar. It was concluded that the highest levels of physiological parameters and antioxidant enzymes activities involved in heat stress tolerance in Flame Seedless and Rotabi cultivars, respectively. Similarity between results of this research and previous study under heat stress conditions in which Flame Seedless and Rotabi cultivars had the highest yield showed that physiological traits and antioxidant enzymes activity have the potential for screening grapevine cultivars for heat stress tolerance.

کلیدواژه‌ها [English]

  • Rotabi grape
  • Flame Seedless grape
  • peroxidase
  • heat tolerance
  • catalase

Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S. R., and Singh, T. P. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Science 171: 382-388. Björkman O., andDemmig, B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin.Planta170: 489-504. Carvalho, L. C., Coito, J. L., Colaco, S., Sangiogo, M., and Amansio, S. 2015a. Heat stress in grapevine: The pors and Cons of Acclimation. Plant Cell Environment 338: 777-789. Carvalho, L. C., Vidigal, P., and Amansio, S. 2015b. Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Frontiers in Environmental Science. doi: 10.3389/fenvs.2015.00020. Chance, B., and Maehly, C. 1955. Assay of catalase and peroxidases. Methods Enzymology 11: 764-775. Choudhury, S., Panda, P., Sahoo, L., and Panda, S. K. 2013. Reactive oxygen species signaling in plants under abiotic stress.Plant Signal Behavior. 8,e 23681. Condolfi-Vasconcelos, M. C., and Koblet, W. 1991. Influence of partial defoliation on gas exchange parameters and chlorophyll content of field-grown grapevines- Mechanisms and limitations of compensation capacity. Vitis 30: 129-141. DeEll J. R., and Toivonen, P. M. A. 2003. Practical applications of chlorophyll fluorescence in plant biology. Springer Science and Business Media New York. 259 pp. DeOrduna, R. M. 2010. Climate change associated effects on grape and wine quality and production. Food Research International 43: 1844-1855. Giannopolitis, C. N., and Ries, S. K. 1977. Superoxide dismutases occurrence in higher plants. Plant Physiology 59: 309-314. Greer D. H., and Weston C. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional Plant Biology 37: 206-214. Gunes, A., Soylemezoglu, G., Inal, A., Bagci, E. G., Coban, S., and Sahin, O. 2006. Antioxidan and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Scientia Horticulturae 110: 279-284 He, Y., Liu, Y., Cao, W., Huai, M., Xu, B., and Huang, B. 2005. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in kentucky bluegrass. Crop Science 45: 988-995. Hendry, G. A. F., and Price, A. H. 1993. Stress indicators: chlorophylls and carotenoids. Pp. 148-152. In: Hendry, G. A. F. and Grime, J. P. (eds.). Methods in Comparative Plant Ecology. Chapman & Hall, London. Hiscox J. D., and Israelstam, G. F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. Jones, G. V., White, M. A., Cooper, O. R., and Storchmann, K. 2005. Climate change and global wine quality.Climate Change 73: 319-343 Kadir, S. 2006. Thermostability of photosynthesis of Vitisaestivalis and V. vinifera. Journal of the American Society for Horticultural Science 131 (4): 476-483. Kadir, S., Von Weihe, M., and Al-Khatib, K. 2007. Photochemical efficiency and recovery of photosystem II in grapes after exposure to sudden and gradual heat stress. Journal of the American Society for Horticultural Science 132 (6): 743-769. Karami, M. J., Fardinnegad, M. R., andTavakoli, A. R. 2016. Comparison of grapevine cultivars under semi-warm climate condition of Darab region. Pp. 245. In: Proceeding of the 9th Iranian Horticultural Science Congress. (in Persian). Karami, M. J., Eshghi, S., and Tafazoli, E. 2017a. Leaf gas exchange and chlorophyll fluorescence in Yaghooti grapevine under heat stress conditions in greenhouse and vineyard. Iranian Journal of Horticultural Science and Technology 18: 237-250. Karami, M. J., Eshghi, S. and Tafazoli, E. 2017b. Study on physiological responses and adaptation of some grapevine cultivars against sever heat stress condition in south of Fars province. Iranian Journal of Horticultural Science 48: 161-174. Keller, M. 2015. The science of grapevine: anatomy and physiology. 2nd Edition. Academic Press. 522 pp. Kitajima, M., and Butler, W. L. 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta 376 (1): 105-115. Kitao, M., Lei, T. T., Koike, T., Tobita, H., and Maruyama Y. 2000. Susceptibility to photo-inhibition of three deciduous broad leaf tree species with different successional traits raised under various light regimes. Plant, Cell & Environment 23: 81-89. Koyama, K., Ikeda, H., Poudel, P. R., and Goto-Yamamoto, N. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78: 54-64. Lang, N. S., Wample, R. L., Smithyman, R., and Mills, L. 1998. Photosynthesis and chlorophyll fluorescence in blackleaf-affected concord leaves. American Journal of Enology and Viticulture 49 (4): 367-374. Lin, Z., Peng, C., Lin, X., Xu, G., and Zhang, J.2005. Thermostability of photosynthesis in two new chlorophyll b-less rice mutants. Science in China Series C Life Sciences 48: 139-147. Lu, P., Sang, W. S., and Ma, K. 2008. Differential responses of the activities of antioxidant enzymes to thermal stresses between tow invasive eupatorium species in China. Journal of Integrative Plant Biology 50: 393-401. Morales, D., Rodriguez, P., Dellamico, J., Nicolas, E., Torrecillas, A., and Sanchez-Blanco M. J. 2003. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum 47: 203-208. Mori, K., Goto-Yamamoto, N., Kitayama, M., and Hashizume, K. 2007. Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany 58: 1935-1945. Moutinho-Pereira, J., Magalh~aes, N., Gonc_Alves, B., Bacelar, E., Brito, M., and Correia, C. 2007. Gas exchange and water relations of three Vitisvinifera L. cultivars growing under Mediterranean climate. Photosynthetica 45: 202-207. Nakano, Y., and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22: 867–880. Rienth, M., Torregrosa, L., Sarah, G., Ardisson, M., Brillouet, J. M., and Romieu, C. 2016. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biology 16: 164. DOI 10.1186/s12870-016-0850-0. Sairam, R. K., Srivastava, G. C. and Saxena, D. C. 2000. Increased antioxidant activity under elevated temperatures, a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum 43: 245-251. Salazar-Parra, C., Aguirreolea, J., Sanchez-Diaz, M., Irigoyen, J. J., and Morales, F. 2010. Effects of climate change scenarios on Tempra‌nillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337: 179-191. Salvucci, M. E., and Crafts-Brandner, S. J. 2004. Inhibition of photosynthesis by heat stress: The activation state of rubisco as a limiting factor in photosynthesis. Physiolgia Plantarum 120: 179-186 Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H., and Tanida, M. 2001. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany 52: 145–151. Schultz, H., 2000. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research 6: 2-12. Shoaf, T. W., and Lium, B. W. 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide-limnol. Oceanography 21: 926-928. Spayd, S. E., Tarara, J. M., Mee, D. L., and Ferguson, J. C. 2002. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture 53: 171-182. Tanaka, K. 1994. Tolerance to herbicides and air pollutants. Pp. 365-378. In: Foyer, C. H., and Mullineaux, P. M. (eds.). Causes of photoxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton. Wise, P. R., Olson, A. J., Schrader, S. M., and Sharkey, T. D. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant, Cell and Environment 27: 717-724. Xu, H., G. Liu, G. Liu, B. Yan, W. Duan, L. Wang, and Li, S. 2014. Comparison of investigation methods of heat injury ingrapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biology 14: 156–165. Zsofi, Z., Varadi, G., Balo, B., Marschall, M., Nagy, Z., and Dulai, S. 2009. Heat acclimation of grapevine leaf photosynthesis: mezo-and macroclimatic aspects. Functional Plant Biology 36: 310-322.